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ABSTRACT 

Background: Alternative polyadenylation (APA) causes shortening or lengthening of the 3ʹ-

untranslated region (3ʹ-UTR) of genes (APA genes) in diverse cellular processes such as cell 

proliferation and differentiation (cell-type-specific APA). To identify cell-type-specific APA 

genes in scRNA-Seq data, current bioinformatic methods have several limitations. First, they 

assume certain read coverage shapes in the scRNA-Seq data, which can be violated in multiple 

APA genes. Second, their identification is limited between two cell types and not directly 

applicable to the data of multiple cell types. Third, they do not control confounders and may 

introduce noise to the elucidation of cell-type-specific functions of APA genes.  

Findings: To address these limitations, we developed a combination of a computational change-

point algorithm and a statistical model, single-cell Multi-group identification of APA (scMAPA). 

To release the assumptions on the read coverage shape, scMAPA formulates a change-point 

problem after transforming the 3ʹ biased scRNA-Seq data to represent the full-length 3ʹUTR 

signal. To identify cell-type-specific APA genes while controlling confounders, scMAPA models 

APA isoforms with cell type and confounder information. In our novel simulation data and 

human peripheral blood monocellular data, scMAPA outperforms existing methods in terms of 

sensitivity, robustness, and stability. In mouse brain data consisting of multiple cell types 

sampled from multiple regions, scMAPA identifies cell-type-specific APA genes, elucidating 

novel roles of APA for dividing immune cells and differentiated neuron cells and in multiple 

brain disorders.  
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Conclusions: Altogether, scMAPA elucidates the cell-type-specific function of APA events and 

sheds novel insights into the functional roles of APA events in complex tissues. 

Keywords: post-transcriptional regulation, alternative polyadenylation, single-cell RNA, cell-

type-specific regulation, confounding factors 

 

 

FINDINGS 

Introduction 

Many mammalian messenger RNAs contain multiple polyadenylation (pA) sites, e.g., proximal 

and distal, in their 3ʹ-untranslated region (3ʹ-UTR) [1], [2]. Using multiple pA sites in each gene, 

alternative polyadenylation (APA) post-transcriptionally produces multiple APA isoforms with 

various 3ʹ-UTR lengths. These APA events are involved in diverse cellular processes such as cell 

proliferation and differentiation in particular cell types. For example, cancer cells of diverse 

types are reported to undergo widespread 3ʹUTR shortening events [3], whereas senescent cells 

tend to show widespread 3ʹUTR lengthening events [4]. To identify such APA genes for each 

cell type (cell-type-specific APA genes) in complex tissues, developing a computational method 

that accurately analyzes single-cell RNA sequencing (scRNA-Seq) data is essential since the data 

presents the cell-type-specific transcriptome.  

To identify cell-type-specific APA genes in scRNA-Seq data, several bioinformatic 

methods have been developed, such as scDAPA[5], Sierra [6], and scAPA [7]. Although they 

have various strengths, they also have several limitations to be used for complex tissue data. 



4 
 

First, they only consider certain read coverage shapes in the input scRNA-Seq data to estimate 

APA events. This is because several scRNA-Seq techniques generate the 3ʹ enriched reads and 

the accumulation of the reads that originate from the same APA isoform forms a peak. To 

identify the signal part of the peak from noise, the existing methods assume certain signal shapes 

in their peak calling. For example, scAPA utilizes findPeaks module in Homer package [8] with 

the preset peak size and height. However, these assumptions can be violated in multiple genes 

across multiple cell types. For example, one would be interested in quantifying APA isoforms of 

FLT3 and GATA2 in the scRNA-Seq data on Peripheral Blood Monocellular Cells (PBMC) of a 

healthy donor (10k in https://www.10xgenomics.com/) since their abnormality may lead to blood 

disorders [9], [10]. However, their 3ʹ tags form peaks with different sizes and heights across 

various cell types (Fig. 1A, C) that the existing methods would not be able to identify peaks 

from some of the cell types. Second, the existing methods cannot identify cell-type-specific APA 

genes when the scRNA-Seq data contains more than two cell types, which is typical for complex 

tissues. scDAPA and Sierra are only able to compare cell types in a pairwise fashion, which 

limits their ability for global comparison when more than two cell types exist. While scAPA is 

the only method to identify APA genes for multiple cell types, it identifies genes in which the 

APA isoform ratio (the ratio of long and short 3ʹ-UTR isoforms) varies across the cell types and 

does not further identify which specific cell types drive this variation. Third, the existing 

methods do not adjust for confounding factors. Confounding can arise when cells are affected by 

factors that are not parts of the research hypothesis under investigation. For example, when 

complex tissue data consist of multiple cell types sampled from various regions, one may need to 

adjust for the sample region as a confounder if the hypothesis focuses only on identifying cell-

type-specific APA genes. Fourth, there is no simulation platform to compare statistical power 

https://www.10xgenomics.com/
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and specificity of the methods identifying APA genes in scRNA-Seq data. Although such a 

platform is necessary to evaluate the methods with the ground truth, it has been challenging to 

simulate APA and non-APA genes since it is not clear how the read coverage shapes differ 

between APA and non-APA genes.  

To address these limitations, we developed a combination of a computational 

optimization algorithm and a statistical model, single-cell Multi-group identification of APA 

(scMAPA). To address the first limitation and quantify APA isoforms without assumptions on 

the read coverage shape, scMAPA first transforms the input scRNA-Seq data and then 

formulates a change-point detection problem on the transformed data. First, scMAPA transforms 

the 3ʹ-enriched signal of scRNA-Seq data to represent the full-length 3ʹUTR signal. For FLT3 

and GATA2 in the PBMC of a healthy donor, this transformation made the APA short and long 

isoforms readily distinguishable across all cell types regardless of the differences in read 

coverage shape (Fig. 1B, D). Then, on the transformed coverage shapes, scMAPA quantifies 

APA isoforms by detecting a change-point. To address the second and the third limitations to 

identify cell-type-specific APA genes and to control confounders respectively, scMAPA 

considers cell type information and adjusts confounders by developing a statistical model with 

them as covariates. By incorporating such covariates in the model, scMAPA estimates statistical 

significance and the effect size of each APA event in each cell type while controlling the 

confounders. To address the fourth limitation and simulate APA genes, we identified a common 

feature of APA genes in real data, a high variance in the APA isoform ratios across cell types 

and simulate the APA isoform specific count matrix based on the common feature. Since this 

simulation platform does not generate data at the level of read coverage shape, it can generate the 

ground truth APA genes without having to resolve the difference between APA and non-APA 
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genes in the read coverage shape. By systematically addressing these limitations, scMAPA 

accurately and robustly identifies cell-type-specific APA genes and facilitates a systematic 

understanding of APA regulation in complex tissues in this manuscript.  

 

Single-cell multi-group identification of alternative polyadenylation (scMAPA) 

To identify cell-type-specific APA genes accurately and robustly, scMAPA combines a 

computational algorithm and a statistical model. scMAPA transforms the input data, formulates a 

change-point detection problem on the transformed data, and quantify APA isoforms by solving 

the problem using an optimization algorithm. First, scMAPA transforms each read in the 

scRNA-Seq data by padding it from the annotated 3'UTR start site to where the read ends (step 1 

in Fig. 1E). While the scRNA-Seq reads are usually 3' biased due to the 3ʹ selection and 

enrichment techniques in the library construction step, the transformed reads will represent the 

read coverage shape across the 3'UTRs. Second, scMAPA identifies a pA site that minimizes the 

difference between the expected coverage shape of the inferred APA isoforms and the 

accumulated observed coverage (change-point, step 2 in Fig. 1E). Since the difference can be 

calculated by a quadratic function, scMAPA detects the change-point by quadratic 

programming[11]. To solve this problem for multiple cell types in scRNA-Seq data, scMAPA 

extends multiple modules of DaPars2 [12], which used the quadratic programming approach to 

identify APA genes in bulk RNA-Seq data. 

To simultaneously identify APA genes across cell types and for each cell type based on 

the APA isoforms quantified, scMAPA develops a multinomial regression model that explicitly 

models each APA isoform (step 3 in Fig. 1E) with covariates representing cell types and 
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confounders (step 4 in Fig. 1E). On the model, scMAPA uses the log-likelihood test and the 

Wald test and identifies across-cell-type APA genes and cell-type-specific APA genes, 

respectively. Altogether, scMAPA is the first method to simultaneously identify across-cell-type 

and cell-type-specific APA genes in scRNA-Seq data of multiple cell types.  

 

scMAPA outperforms the other method in sensitivity for the multi-group setting  

To assess the performance of scMAPA using the ground truth, we developed a novel simulation 

platform where APA isoform-specific expressions are simulated with parameters learned from 

real data. Especially, to make the simulations unbiased and biologically reasonable, it is based on 

a common feature of APA genes we identified in a mouse brain scRNA-Seq data consisting of 

multiple cell types [13] (neurons, astrocytes, immune cells, oligodendrocytes, and vascular, step 

0 in Fig. 2A) in the following procedure. First, we determined APA genes across the cell types as 

those identified by both scAPA and scMAPA. We used only scAPA and scMAPA since they are 

the only methods designed for more than two cell types. Since both methods determine the APA 

genes as those whose APA long and short isoforms vary highly among cell types, we decided to 

quantify a common feature of the APA genes by calculating the proportion of the long and short 

isoforms in each cell type and the standard deviation of the proportions across the five cell types 

(𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝, see Methods). To validate the effectiveness of this measure, we calculated 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 

values for non-APA genes that scAPA and scMAPA agreed on in the data. We found that high 

𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values significantly distinguish APA genes from non-APA genes (0.127 vs. 0.009 of 

𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 on average, p<2.2e-16, S. Fig. 2A), suggesting that it is reasonable to simulate APA 

genes to have high 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values in the data of multiple (≥2) cell types (multi-group setting).  
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To simulate APA genes with high 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values across 5 simulated cell clusters, we 

first selected the 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values estimated for the APA genes of the mouse brain data. Then, 

based on the selected 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 value, which is the standard deviation of APA isoform ratios, we 

randomly generated the APA isoform ratios across the 5 simulated cell clusters (step 2 in Fig. 

2A). After separately simulating gene expression values (step 3 in Fig. 2A), these isoform ratios 

were used to divide the gene expression values into APA long and short isoform expressions 

(step 4 in Fig. 2A). Similarly, we simulated the APA long and short isoform expressions for non-

APA genes based on the 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values estimated for the non-APA genes of the mouse brain 

data. On the simulated APA isoform expressions for APA and non-APA genes, we ran scMAPA 

and scAPA to assess their sensitivity and specificity. In the first scenario simulating 500 APA 

and 4,500 non-APA genes, we varied 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝  values for APA genes in the range observed in 

the mouse brain data (0.06 to 0.18, S. Fig. 2A). Across all simulated 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝  values, scMAPA 

consistently outperforms scAPA with higher sensitivity (Fig. 2B) while having a similar 

specificity (Fig. 2C). In assessing specificity, we did not vary 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values for non-APA 

genes, since the mouse brain data showed a narrow range of 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values for non-APA 

genes (S. Fig. 2A). In the second scenario, we varied the number of APA and non-APA genes 

and the cell group size while fixing the 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values for APA and non-APA genes (to 0.127 

and 0.009, respectively). With various numbers of true APA genes (250, 500, and 1,000), 

scMAPA consistently outperforms scAPA in terms of sensitivity (Fig. 2D and S. Fig. 2B, D) 

with a slight loss of specificity (Fig. 2E and S. Fig. 2C, E, F). To sum, scMAPA outperforms 

scAPA in various simulation scenarios in terms of sensitivity with a similar level of specificity. 
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scMAPA outperforms existing methods in identifying APA isoforms with high robustness 

To assess the performance of scMAPA using real data, we used three PBMC data sets of various 

numbers of cells (1k, 5k, and 10k data representing the number of cells) downloaded from 10x 

Genomics website. Especially, to assess the performance across multiple cell types, we defined 

different numbers of cell types (6, 8, and 13 types for 1k, 5k, and 10k data respectively) based on 

Seurat’s graph-based clustering [14] and annotated their cell types based on established marker 

genes [15] (see Methods, S. Table 1). To assess the accuracy of scMAPA in identifying 

annotated pA sites, we identified pA sites in the 10k and 5k data using scMAPA, scAPA, and 

Sierra. scDAPA was not included in this comparison, because it does not return results that are 

compatible for the comparison, such as pA peaks, sites, or intervals. Among the identified pA 

sites, we calculated the proportion of them that are close to the annotated pA sites in PolyASite 

2.0[16] (see Methods). scMAPA consistently outperformed the other methods by identifying the 

highest proportion of the annotated pA sites across all degrees of proximity (Fig. 3A, S. Fig. 3A, 

B). This result suggests the outperformance of scMAPA in identifying possible bona fide APA 

events originated from the annotated pA sites.  

We further evaluated the robustness of the methods in two ways. First, we ran scMAPA, 

scAPA, scDAPA, and Sierra to identify APA genes in the 1k, 5k, and 10k PBMC data. Since the 

1k, 5k, and 10k data sets comprise similar sets of cell types from healthy adults (1k and 10k from 

the same donor and 5k from another healthy donor, S. Table 1), the APA genes are expected to 

overlap across the data sets. Thus, a high percentage of APA genes identified commonly across 

the data sets would indicate the robustness of the methods to the number of cells in the data. 

Although Sierra and scDAPA cannot identify APA genes directly from multiple (>2) cell types, 

we artificially identified the APA genes for multiple cell types by combining all pairwise 
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identifications after FDR control (see Methods). Compared to the competing methods, scMAPA 

identified a two-fold higher percentage of APA genes commonly across the 3 types of the data 

sets (40.7% vs. 18.9%, 11.6%, and 18.6% respectively, Fig. 3B), showing that scMAPA 

identifies APA genes robustly to the number of cells in the data. Second, from the 10k data 

comprising the total of 13 cell types, we randomly sampled various numbers of cell types (5, 7, 

9, and 11) from the 13 cell types and ran scMAPA and scAPA separately in each sample. For 

direct comparison, we compared scMAPA only with scAPA, the only other method that can 

directly handle the multi-group setting. In the APA genes identified in each sample (sample APA 

genes), we calculated the overlap with those identified using all the 13 cell types (total APA 

genes). Then, we calculated APA agreement ratio, defined as the number of the overlap between 

the sample and total APA genes normalized by the number of total APA genes. In all the 

numbers of cell types sampled, scMAPA outperforms scAPA with higher APA agreement ratios 

(Fig. 3C). Since the APA agreement ratio indicates the number of the total APA genes that are 

found in the sample APA genes, the result shows that scMAPA identifies APA genes robustly to 

the number of cell types in the data.  

Further, to investigate if the APA genes identified by scMAPA are biologically 

reasonable, we performed Ingenuity Pathway Analysis (IPA) on 3,574 APA genes that scMAPA 

identified in the 10k PBMC data. Especially, to accurately investigate the APA genes’ roles in 

PBMC biology, we set the 18,804 genes expressed in the data as the background (see Methods). 

This IPA analysis shows significant (B-H p-value < 10-2) enrichments to 32 IPA terms that are 

characterized with keywords “blood” and “hematology” (Fig. 3D), suggesting that the APA 

genes identified by scMAPA can play important roles in PBMC biology.  
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To examine the unique contribution of scMAPA in characterizing the function of APA 

genes for PBMC biology, we manually inspected 1,432 APA genes that are identified only by 

scMAPA, not by other methods (scMAPA-unique APA genes, S. Table 2). In the scMAPA-

unique APA genes, we found clear changes in the APA isoform ratios across the cell types and 

great potential to function for PBMC biology. For example, FLT3 and GATA2 are included in 

the scMAPA-unique APA genes and showed the dynamic APA isoform ratios across the cell 

types especially after the data transformation step of scMAPA (Fig. 1B, D). Interestingly, 

GATA2 is an APA gene in the scRNA-Seq data of bone marrow mononuclear cells from acute 

myeloid leukemia patients [17]. Since bone marrow is developmentally related to peripheral 

blood, GATA2 may undergo the APA event in the PBMC under similar molecular mechanisms. 

Together, scMAPA enables accurate and robust identification of biologically reasonable APA 

genes in the PBMC scRNA-Seq data.  

 

scMAPA estimates APA effect size and identifies APA genes across multiple cell types  

Compared to other methods, scMAPA is the only method that can estimate the effect size and the 

significance of APA events for each cell type in the multi-group setting (see Methods). To 

demonstrate how the APA effect size enables us to understand the post-transcriptional regulation 

in each cell type, we analyzed the mouse brain scRNA-Seq data comprising five major cell 

types: neurons, astrocytes, immune cells, oligodendrocytes, and vascular [13] (Fig. 4A, see 

Methods). First, to identify the distances among the cell types in terms of the APA effect size, 

scMAPA estimated the effect size of 3,223 genes significantly (B-H P-val < 0.05) identified as 

APA genes across the five cell types (Fig. 4B). Based on these effect sizes, we performed the 

PCA analysis (Fig. 4C) and calculated Euclidean distance (S. Fig. 4A) between the cell types. 
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While both the analyses supported the previous finding that immune and neuron cells are most 

different in terms of the APA effect size [7], they further revealed that immune cells are most 

different from all the other cell types. Second, to identify the overall relationships between the 

APA regulation and the gene expression regulation, we correlated the APA effect sizes of all the 

identified genes with their expression level. The result shows that the APA effect sizes are not 

correlated with their expression level in all the cell types (e.g., Spearman’s ρ < 0.05 for all cell 

types, S. Fig. 4D-H), demonstrating that APA events are regulated independently of gene 

expression regulation in the mouse brain.  

Further, cell-type-specific APA genes (3ʹ-UTR shortening and lengthening genes) 

identified by scMAPA provide a systematic understanding of cellular status. Previous studies 

showed that APA is involved in regulating cell division status. For example, various types of 

dividing cells are associated with widespread 3ʹ-UTR shortening [18], [19]. Likewise, 

differentiated and senescent cells are associated with widespread 3ʹ-UTR lengthening [20], [21]. 

To systematically extend these findings that were made in cell line data [18], [20], [22] or 

heterogeneous tissue data [19], we ran scMAPA in the mouse data further to identify 438 

significant (B-H P-val < 0.05) cell-type-specific APA genes in neurons, 891 in immune, 374 in 

astrocyte, 422 in vascular, and 430 in oligos with some overlaps across the cell types (S. Fig. 

4B). A further division into 3ʹ-UTR shortening and lengthening genes in each cell type (Fig. 4D) 

showed that 3ʹ-UTR shortening and lengthening are significantly enriched in immune cells and 

neuron cells, respectively. As immune cells actively divide to dynamically regulate the immune 

system, the enriched 3ʹ-UTR shortening may contribute to the active division. In the same sense, 

we could find a biological explanation for why 3ʹ-UTR lengthening are enriched in neurons. 

While neurons do not divide once they are formed in the brain, our result suggests that the 3ʹ-
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UTR lengthening can play a significant role in keeping neuron cells from further dividing. 

Together, by identifying cell-type-specific APA genes, scMAPA systematically links the cellular 

APA profile to dividing immune cells and differentiated neuron cells.  

 

Controlling confounders through scMAPA uncovers functions of APA genes which would 

be invisible due to the confounders  

To show how scMAPA controls confounding factors and why it is important, we analyzed the 

mouse brain data consisting of 5 cell types collected from 2 brain regions (cortex and midbrain). 

Since some cell types were collected from multiple brain regions (Fig. 4A, 5A), some APA 

genes associated with a brain region can be mistakenly identified as cell-type-specific APA 

genes, which would further confound studying cell-type-specific functions of APA genes. To see 

if scMAPA can remove such false positive APA genes, we ran scMAPA with the brain region 

information (cortex and midbrain dorsal) as the confounder (confounder-adjusted scMAPA) and 

without the confounder (confounder-unadjusted model), separately. As the confounder-adjusted 

scMAPA and the confounder-unadjusted model identified 2,715 and 2,793 APA genes 

respectively (S. Table 6), 113 genes are no longer identified as significant APA gene after 

adjusting brain region. Thus, these APA genes are expected to be related to the confounders 

(confounder-related APA genes, Fig. 5B), which is the brain region it was sampled from (cortex 

and midbrain). To test if the 113 genes function specifically for the brain region, we test if they 

express highly specifically in the brain region. To conduct this test comprehensively, we 

identified their human homolog genes in the Mouse Genomic Informatics (MGI) homology 

database and compared expression of human homologs between cortex and other brain regions in 

the Genotype-Tissue Expression (GTEx) [23] (see Methods). The result shows that these APA 
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genes are significantly up-regulated in brain cortex compared to other brain regions (p-

value=5.8e-7, Fig. 5D), suggesting that their functions are specific to brain cortex. Since GTEx 

does not collect the expression data for midbrain, we did not conduct this analysis for midbrain. 

This result suggests that, when scMAPA sets a confounder, it can successfully distinguish and 

exclude the APA genes that are likely related to the confounder.  

 To demonstrate why distinguishing and excluding the confounder-related APA genes is 

critical for accurate downstream analysis, we further conducted IPA analysis on the 2,715 and 

2,793 APA genes identified by the confounder-adjusted scMAPA and the confounder-unadjusted 

model respectively (confounder-adjusted and confounder-unadjusted APA genes, respectively). 

Comparing the IPA enrichment between confounder-adjusted and confounder-unadjusted APA 

genes, we found considerable differences in important terms for brain study: among the 24 terms 

to which the confounder-adjusted APA genes are uniquely and significantly (B-H P-value < 10-2) 

enriched, 7 terms are directly related to brain diseases (Fig. 5D). For example, two terms with 

the keyword “mental retardation” are significantly enriched (B-H P-value < 10-3.5) only for the 

confounder-adjusted APA genes. On the other hand, among the 30 terms to which the 

confounder-unadjusted APA genes are uniquely and significantly enriched, no term refers to a 

brain disease (S. Fig. 5A). This result suggests that the confounder-adjusted scMAPA uncovers 

the APA genes that can play critical roles in the brain disease, which would be invisible due to 

the confounding factors.  

 

Supplemental material  

APA regulation on expression 
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Previous studies have suggested that APA genes are more likely differentially expressed[1], [2], 

since either 3ʹ-UTR shortening removes microRNA (miRNA) binding sites on the 3ʹ-UTR and 

evades miRNA-mediated repression or 3ʹ-UTR lengthening adds miRNA binding sites and 

enhance miRNA-mediated repression. Our analysis reaffirms the previous observations in the 

scRNA-Seq data. 

scMAPA consensus with other methods 

In the PBMC data, scMAPA results still recover most of the results from the other methods. To 

assess the overlap, we identified significant APA genes across all the cell types in scMAPA and 

scAPA. Since scDAPA and Sierra identify APA genes only between cell-type pairs, we 

combined the pairwise significant APA genes in each method separately. After controlling FDR 

on the combined APA genes, we called APA genes if they are significant in any of the pairwise 

identifications. While scMAPA identifies an intermediate number of APA genes between 

scDAPA and Sierra/scAPA (10k in S. Fig. 3C and 5k in S. Fig. 3D), more than half of the 

scMAPA’s findings are found in other methods (59.9% for 10k and 51.9% for 5k). While 

scMAPA solves an optimization problem based on the padding of 3ʹ biased reads (step 1 in Fig. 

1C), it successfully recovers most results from other methods, validating the use of scMAPA for 

comprehensive identification.  

Cell-type-specific APA genes in 10k PBMC data 

The global size differences in PBMC cells are different from in the mouse brain data in several 

aspects. First, 3'UTR lengthening occurs more than 3'UTR shortening in all the cell types (S. Fig. 

4E). Second, however, the number of 3'UTR shortening genes is significantly correlated with 

that of lengthening genes across the cell types (P-value=5e-5, S. Fig. 4F). Since both trends are 
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not shown in the mouse brain data, scMAPA elucidates the unique APA profiles of the PBMC 

data. 

Specificity of high expression in 113 confounder-related APA genes for the brain cortex region 

In demonstrating the high expression of the 113 confounder-related APA genes in the brain 

cortex region, we further investigated if the confounder-related APA genes are not down-

regulated in neither brain vs. non-brain samples (S. Fig. 5B) nor cortex vs. non-cortex brain 

samples (S. Fig. 5C). Also, this brain-region-specific expression pattern was not found for 2,715 

APA genes identified by the confounder-adjusted scMAPA (S. Fig. 5D, E, F, G). Together with 

our analysis on up-regulation (Fig. 5), the results suggest that the 133 APA genes function 

specific to the brain region. 

 

Discussion 

To identify APA genes in scRNA-seq data for complex tissue data, we developed scMAPA that 

addresses several limitations in existing methods using a combination of a computational 

optimization algorithm and a statistical model. First, while existing methods detect APA signals 

with assumptions on the shape of the input data, scMAPA does not rely on such assumptions by 

formulating this task in quadratic programming. By solving this quadratic programming for 

genes with different read coverage shapes across cell types, scMAPA outperforms existing 

methods in accurately and robustly identifying APA genes in various simulated (Fig. 2) and 

PBMC data (Fig. 3). Second, scMAPA identifies APA genes specific to each cell type in a 

statistically rigorous model. These cell-type-specific APA genes elucidates their connections to 

the cell division status of immune and neuron cells in the mouse brain data (Fig. 4). Third, 
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scMAPA can control confounding factors. In the mouse brain data of five cell types collected 

from two brain regions, scMAPA can distinguish the 113 APA genes that are likely related to the 

brain regions. By removing the false positive APA genes from further analyses, scMAPA could 

clarify the functions of APA genes on brain diseases such as ‘mental retardation’ (Fig. 5). Lastly, 

we developed a novel simulation platform in which to assess statistical power of APA 

identification methods based on a common feature of APA genes, the high variation of APA long 

and short isoforms (𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝) across cell clusters.  

When identifying the annotated pA sites, scMAPA makes point estimations of the pA 

sites. While other methods mainly produce interval estimates, point estimations are more directly 

relevant to further analyses than interval estimations, e.g., conducting omics data analyses and 

designing validation experiments. However, when point estimation methods are naively 

compared to interval estimation methods in terms of the distance to the annotated pA sites, point 

estimations produce generally disadvantageous results, because point estimation returns a single 

point while interval estimation returns two points (start and end of the interval) to measure the 

distance. For example, the interval estimations produce better results than the point estimations 

within both Sierra and scAPA (S. Fig. 3A, B). Even with this disadvantage of point estimation 

for comparison purposes, the point estimation of scMAPA outperforms the interval estimation 

results of Sierra and scAPA in identifying the annotated pA sites, showing a clear advantage of 

scMAPA (Fig. 3A, S. Fig. 3A, B).  

A limitation of this paper is that, although scMAPA can consider more than two pA sites 

(see Methods), our analysis focused on the use of two pA sites (most distal and most proximal) 

for the following reasons. First, some of the methods that compare with scMAPA consider only 

two pA sites, e.g. scAPA. For fair comparisons, we limited scMAPA to consider two pA sites. 
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Second, we focused on this binary APA trend to make it easier to investigate across multiple cell 

types. We plan to consider more than two pA sites in complex tissues after characterizing the 

binary trend across multiple cell types. For example, after solving the quadratic programming 

with >2 pA sites and developing a multinomial logistic regression model with the identified pA 

sites in the mouse brain data, we can estimate the APA effect size for each use of the multiple pA 

sites.  

scMAPA can be extended in the following directions in the future. First, the 

transformation step of scMAPA allows us to use other methods originally developed for bulk 

RNA-Seq data (e.g. APATrap [30], TAPAS [31]) to analyze scRNA-Seq data. Since the methods 

can identify APA genes in the full-length 3ʹ UTR signal of transcripts, scMAPA can employ 

such methods on the transformed scRNA-Seq data that represents the full-length 3ʹ UTR signal 

of transcripts. This extension can make those APA identification methods as reasonable 

alternatives since those methods are well established and studied in terms of sensitivity and 

specificity. Second, while existing methods developed for scRNA-Seq data are mostly designed 

for 3ʹbiased scRNA-Seq data (e.g. 10x), scMAPA can be used for the scRNA-Seq data that are 

not 3ʹbiased (e.g. Smart-seq2 [32]) simply by skipping the data transformation step, since the 

scRNA-Seq data already present the full-length 3ʹ-UTRs.  

Altogether, we developed scMAPA to identify APA genes in scRNA-Seq data of 

multiple cell types. With high sensitivity and robustness in addition to adjusting for confounders, 

scMAPA elucidates the cell-type-specific function of APA events, which is essential to shed 

novel insights into the functional roles of APA events in complex tissues. 
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METHODS 

Processing data sets 

PBMC data. Aligned BAM files were downloaded from the 10X genomics repository 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets). According to the data 

description of 10X, 1K, and 10K data were generated from the same materials. 5K data was 

generated from different cells. PCR duplicates were removed using UMI-tools 1.0.0 with “--

method=unique --extract-umi-method=tag --umi-tag=UB --cell-tag=CB”. Cell clustering was 

performed using R package Seurat 3.1.4[24]. We filtered to keep cells with more than 1000 UMI 

counts and 500 genes expressed. Cells with more than 15% UMI counts from mitochondrial 

genes were filtered out. Then, raw data were normalized by regressing against UMI count, 

mitochondrial mapping percentage, and ribosome genes mapping percentage using SCTransform 

function. We ran PCA analysis and took the top 20 principal components as input to 

FindNeighbors function. Finally, FindClusters function was run with resolution set to 0.2 to 

identify cell communities. Cell types were annotated by matching the expression pattern of well-

known marker genes for PBMC [15]. 

Mouse brain data. Aligned BAM file and clustering results of cortex and midbrain dorsal from 

two donors were downloaded from [13]. PCR duplicates were removed using UMI-tools[25] 

same parameters used for PBMC data. To keep consistent with the analysis performed by 

scAPA, we included only neurons, immune cells, astrocytes, oligos, and vascular cells in our 

analysis. Differential expression analysis was performed by FindAllMarkers function of Seurat 

package with min.pct set to 0.25 and all other parameters as default.  
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Investigating sample-specific up-regulated genes in GTEx 

First, the mouse-human homology data was downloaded from the Vertebrate homology database 

in the Mouse Genome Informatics (MGI) (http://www.informatics.jax.org/homology.shtml) and 

used to find homologs in human. Then, we ranked GTEx samples based on the overlap between 

the upregulated genes and the homolog genes using a database that curates the up- and down-

regulated genes for each GTEx sample, Enrichr [26]. Enrichr evaluates the overlap by combining 

p-value and odds ratio (Combined Score in Enrichr).  We could not conduct this analysis for the 

midbrain dorsal region, since the GTEx did not collect data from the region. 

 

scMAPA algorithm 

Step 0. Split aligned reads by cell clusters. 

scMAPA takes aligned BAM files and user-provided clustering information (e.g. cell type) as a 

match table to split the whole BAM file into each cluster using pysam. Clustering information 

should include all the categorical variables that the user would like to consider in the modeling, 

but not only cell type. For example, when detecting APA genes in the mouse brain data, we used 

both brain region and cell type as covariate variables. After splitting, UMI-tools is used to 

remove the PCR duplicates by grouping reads that sharing the same UMI. Further, scMAPA can 

identify false APA identifications due to internal priming of A-rich internal regions if more than 

7 consecutive adenines with up to 1 mismatch exists in 10 nt downstream of the predicted 

proximal PA site[16]. In the PBMC 10K data, we identified that 90 out of 3574 APA events are 

due to suspected internal priming according to this standard. 

Step 1. Pad reads along the 3'UTR after preprocessing. 

http://www.informatics.jax.org/homology.shtml
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We transform aligned scRNA-Seq data that utilize 3ʹ selection and/or enrichment techniques in 

library construction (e.g. Drop-Seq, CEL-Seq, and 10x Genomics). A 3ʹ biased read assigned to 

the 3ʹUTR of a gene represents the most 3ʹ end part of the transcript. With this reasoning, we 

extend the 3ʹ biased read starting from the annotated 3'UTR start site to where the read ends 

(Step 1 in Fig. 1). After padding all the reads this way, we recalculate the read coverage on the 

3ʹUTRs using ‘bedtools genomecov’ in Bedtools package[27] for each gene. Since the result 

represents the full-length read coverage of the transcript in the 3ʹUTR, our novel padding step 

enables us to employ sensitive statistical approaches as follows.  

Step 2. Quantify 3'UTR long/short isoforms. 

For further quantification, we formulate an optimization problem to infer the proximal pA site. 

Since our transformation reveals the proximal pA site where the read coverage changes, the 

optimization problem is minimizing the difference between the accumulated density of the 

isoforms and the input RNA-Seq read coverage as follows.  

(𝑤𝑘𝐿
∗ , 𝑤𝑘𝑆

∗ , 𝑃𝑘
∗) = argmin

𝑤𝑘𝐿
∗ ,𝑤𝑘𝑆

∗ ≥0,1<𝑃𝑘<𝐿
|| 𝑅𝑘𝑖 − (𝑤𝑘𝐿𝐼𝑘𝐿 + 𝑤𝑘𝑆𝐼𝑘𝑃)||2

2  

where 𝑤𝑘𝐿 and 𝑤𝑘𝑆 are the transcript abundances of long and short 3ʹ-UTR isoforms for cell 

cluster 𝑘, respectively. 𝑅𝑘𝑖 = [𝑅𝑘𝑖1, … , 𝑅𝑘𝑖𝑗, … , 𝑅𝑘𝑖𝐿]
𝑇
is the corresponding read coverage at 

single-nucleotide resolution normalized by total sequencing depth. L is the length of the longest 

3ʹ-UTR length from annotation, 𝑃𝑘 is the length of alternative proximal 3ʹ-UTR to be estimated, 

𝐼𝑘𝐿 is an indicator function with L times of 1, and𝐼𝑘𝑃 has 𝑃𝑘 times of 1 and 𝐿 − 𝑃𝑘 times of 0. We 

solve this equation using quadratic programming [19] as was done in DaPars2. We will describe 

how this is extended to identify genes with more than two pA sites at the end of this section.  
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Step 3. estimate APA significance across cell clusters.  

To make sure only genes with strong APA signals among multiple cell types are identified, we 

first filter out genes in which only 1 PA site is detected in less than 3 cell types. Then, for each 

gene, we calculate the CPM for long and short isoforms separately and average over all cell 

types. Only genes with an average CPM larger than 10 for both long and short isoforms are kept. 

In addition to gene-wise filtering, we also apply cell-wise filtering on passed genes to let only 

cell types with at least 20 raw counts enter the model fitting step. This ensures the estimation of 

the coefficient would not be biased by cell types with extremely low counts.  

To model the relationship between the long/short isoform identified above and the given cell 

types, we build logistic regression for each gene with log-odds of the event that transcript uses 

distal polyA site (having long isoform) as the outcome and cell types as predictors using 

weighted effect coding scheme. When scRNA-Seq data were collected from multiple samples or 

individuals, scMAPA can be easily extended to control the effect of unmatched confounding 

factors by adding them into the regression model: 

ℓ = ln
𝑝

1 − 𝑝
= 𝛽0 + ∑ 𝛽𝑖 ∗ 𝐶𝑖

𝑛−1

𝑖

+ ∑ 𝛽𝑗 ∗ 𝑉𝑗

𝑚

𝑗

 

where 
𝑝

1−𝑝
 is the odds of the transcript having a long isoform. 𝛽𝑖 and 𝐶𝑖 denote the coefficients 

and the binary indicator of each cell type, respectively. 𝑛 is the number of cell types. Since one 

cell type needs to be chosen as a reference for model fitting, scMAPA fits the model twice to get 

the estimates of coefficients for all cell types. 𝑉𝑗 and 𝛽𝑗 denote the sample-specific binary 

confounding variables (e.g., clinical variable) and their coefficients, respectively. 𝑚 is the 

number of confounding factors.  
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When there is no confounding factor, the likelihood ratio test (LRT) between cell type only 

model and null model is conducted to test the unadjusted effect of cell type, which is equivalent 

to the likelihood ratio chi-squared test of independence between long/short isoforms and cell 

types. With the existence of confounding variables, LRT between the full model and 

confounding variables only model is conducted to test the adjusted effect of cell type. P-values 

from all tests are further adjusted by the Benjamini–Hochberg procedure to control the false-

discovery rate (FDR) at 5%. In addition, to ensure there is a significant change in effect size, the 

odds ratio of each cell type against the grand mean of all included cell types is calculated. There 

should be at least one cell type whose odds ratio is greater than 0.25 for a gene to be called an 

APA gene. 

Currently, scMAPA assumes only 2 pA sites in the 3ʹ-UTRs. However, our logistic model for 

step 2 can be easily extended to detect >2 peaks if employing other quantifiers that can consider 

>2 pA sites. For example, when only 2 peaks are detected for a gene, a binary logistic regression 

model would be fitted. However, when more than 2 peaks are detected for a gene, a multinomial 

logistic regression model would be fitted. To the best of our knowledge, since the only current 

tool that detects >2 peaks is scAPA, a multinomial logistic regression model is only compatible 

with the peak detection result of scAPA. LRT test is used to estimate the significance of APA 

among multiple peaks and cell types similarly.  

Identification of cluster-specific 3ʹ-UTR dynamics. 

For the genes where significant APA dynamics is detected, scMAPA further analyses which cell 

type significantly contributes to the APA in which direction within each gene. By using a 

weighted effect coding scheme, each coefficient in the logistic regression can be interpreted as a 

measurement of deviation from the grand mean of all cells. This grand mean is not the mean of 
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all cell type means, rather it is the estimate of the proportion of long isoforms of all cells for each 

gene. So, the unbalanced cell population sizes, which are common in scRNA-Seq would not 

affect the accuracy of estimation.  

We use the following two criteria to determine the cluster-specific significant 3ʹ-UTR dynamics:  

First, given coefficients estimated from logistic regression, we use the Wald test to determine the 

p-value of each coefficient. P-values among all genes with significant APA of the same cell type 

are further adjusted by FDR. Then, the absolute coefficient must be greater than ln (2), 

corresponding to a 2-fold change in odds ratio. 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ≥ ln (2) would be considered as 3ʹ-

UTR lengthening and 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ≤ −ln (2) would be considered as 3ʹ-UTR shortening. 

However, users can define a different cutoff value than ln (2) for 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 for the stringency 

they want to set on the identification.  

Identification of genes of more than two pA sites. 

scMAPA can be easily extended to detect more than two pA sites and subsequently identify the 

significant differential usage of them. To detect more than two pA sites, scMAPA employs a 

similar approach to DaPars as follows. Instead of optimizing the regression model with a fixed 

number of predictors (proximal and distal pA sites), the case with more than 2 pA sites across 𝑛 

cell types can be formulated as follows. 

[

r11 r12 ⋯ r1n

r21 r22 ⋯ r2n

⋮ ⋮ ⋯ ⋮
rm1 rm2 ⋯ rmn

] = [

1 1 ⋯ 1
0 1 ⋯ 1
⋮ ⋮ ⋯ ⋮
0 0 ⋯ 1

]

m×m

[

w11 ⋯ w1n

w21 ⋯ w21

⋮ ⋯ ⋮
wm1 ⋯ wmn

]

m×n

 

where m is the length of the longest 3ʹ-UTR of a transcript. wij is the estimated abundance of 

one possible 3ʹ-UTR i in cell type j. Then, detecting multiple PA sites and estimating the 
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abundance can be optimized by a LASSO regularization, in which the following equation should 

be optimized. 

argmin
1

2
W

|| C − MW ||2
2 + λ‖W‖1 

While the number of non-zero wij indicates the number of pA sites for this gene, scMAPA will 

consider the genes with up to four estimated non-zero wij by default that can be further changed 

by the user.  While this would avoid overfitting, we expect the default value to allow us to 

capture most genes according to a recent study on the number of pA sites for genes[28].  

After PA sites detection, the binomial logistic regression could be extended to a multinomial 

logistic regression to identify differential PA site usage when more than 2 PA sites exist. If in 

total P PA sites are detected by PA site detection module, the differential PA sites identification 

could be modeled as following, 

Prob(PAi = p) =
eβp ∙ Xi

∑ eβk ∙ Xi
P
k=1

 

where p is one of the P PA sites. Xi is a row vector of features of an observed transcript. βp is the 

coefficients associated with PA site 𝑝.  

 

Simulation 

First, we used Splatter[29], a widely known scRNA-Seq simulator, to simulate the cell-level 

count matrix, which acts as the base of synthetic data. Splatter was trained by unfiltered mouse 

brain data and set to generate count matrices containing 5000 genes and 3000 cells. The matrix 
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then collapsed into 5 columns, representing the total count of 5 cell groups. We call this 5000 × 5 

matrix a cluster-level count matrix.  

From the analyses of PBMC and mouse brain data, we found that the standard deviation of PDUI 

(percentage of distal polyA site usage, which is equivalent to the proportion of long isoforms) of 

each gene could act as a classifier of APA gene and non-APA gene. Based on that, the standard 

deviation of PDUI for APA genes in synthetic data is estimated by calculating the mean of 

standard deviations of PDUI from APA genes detected by both scMAPA and scAPA from 

mouse brain data. Similarly, the standard deviation of PDUI for non-APA genes was estimated 

by calculating the mean of standard deviations of PDUI from genes identified as non-APA by 

both scMAPA and scAPA. With the estimated standard deviations, a PDUI matrix with the same 

size (5000 × 5) as the cluster-level count matrices was generated. Each row of the PDUI matrix 

has a standard deviation equal to either the estimated standard deviation for the APA gene or the 

non-APA gene. This is achieved by centering 5 randomly selected numbers from standard 

normal distribution to 0. Then multiply the desired standard deviation to these centered numbers 

and add them to the desired mean. The mean of each row was randomly picked from 0.05 to 

0.95. Since the estimated 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values are averaged to 0.127 and 0.009 for the APA and the 

non-APA genes respectively, we generated simulation data with 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 for APA genes in a 

range centered on 0.13 while fixing that for non-APAs at 0.009. The rows representing true APA 

genes were randomly selected. Then, each number in the cluster-level count matrix is divided 

into the count of long isoforms and the count of short isoforms by multiplying and PDUI matrix 

or (1-PDUI matrix), respectively. Finally, Pearson’s chi-squared test (scAPA), logistic regression 

model + LRT (scMAPA) could be applied to assess the performance of these three methods. For 

each repeat of simulation, PDUI matrix is regenerated but the cluster-level count matrix keeps 
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the same for the sake of computational burden. Every simulation design was repeated 100 times 

to derive summarized statistics.  

To examine the impact of experimental design on statistical power to detect significant APA 

genes, we assess the performance of scMAPA and scAPA in the following aspects: 1) To test the 

impact of unbalanced cell populations, the proportion of 5 cell types in the synthetic cell-level 

count matrices were set to three scenarios with different distribution of cell-type populations: 

(20%, 20%, 20%, 20%, 20%), (30%, 17.5%, 17.5%, 17.5%, 17.5%), and (50%, 12.5%, 12.5%, 

12.5%, 12.5%). 2) To test the impact of the proportion of true APA genes, we set three levels of 

true APA proportions, 5%, 10%, and 20%. 3) To test the impact of the extent of APA dynamics, 

instead of using mean of standard deviations, we set the standard deviations of true APA genes 

in the simulated PDUI matrix to the 15 equally spaced sequence of numbers between the first 

quartile and the third quartile of standard deviations estimated from APA genes in mouse brain 

data. In total, there were 9 scenarios, corresponding to 9 combinations of factors 1) and 2). When 

testing factor 3), we chose balanced cell type proportion (0.2, 0.2, 0.2, 0.2, 0.2) and 10% true 

APA genes.  

Assessing accuracy of PA site estimation 

To assess the PA site/ peak interval prediction accuracy, we used peak lists or PA site lists from 

scMAPA, scAPA, and Sierra on PBMC data. The estimation accuracy is measured by the 

percentage of the predicted peaks or PA sites overlapped with PA sites annotated in PolyASite 

2.0. Since it is meaningless to find the overlap between two-point estimates, we expanded the 

point position from the annotation database to an interval by manually adding a distance ranging 

from 10 bp to 150 bp in a 10 bp increment to both sides of the annotated PA sites. scMAPA 

gives a point estimate of PA site as predicted proximal PA site and Sierra gives two-point 



28 
 

estimates as fit max position and max position. To make the comparison more comprehensive, 

we calculated the midpoint of peak interval as the pseudo point estimate of scAPA. The point 

estimates from these methods are considered as supported by the annotation database if the point 

position falls in the annotated interval (annotated PA site ± distance). For peak intervals 

estimated by scAPA and Sierra, as long as there is 1 bp overlap between the estimated interval 

and the annotated interval (either start or end of estimated interval falls in annotated PA site ± 

distance), the estimate would be considered as supported by annotation database. Then, the 

percentage supported by annotation is calculated as the number of PA sites or peak intervals 

supported by the annotation database divided by total peaks detected for each method.  

 

Running scDAPA, scAPA and Sierra 

Sierra and scDAPA were run with default parameters. scAPA was run with default parameters 

and intronic regions omitted. The genes with a CPM of less than 10 were filtered out. We want to 

point out that scAPA employs chisq.test function in R to estimate the significance of dynamic 

PA sites usage among multiple clusters. This potentially makes the identification of scAPA much 

conservative than other tools in the multi-group setting since it does not allow any cell type to 

have 0 count, as R’s chisq.test would return NA as p-value if there is 0 presented in the count 

table. However, it is common to observe that a few cell types would not express certain genes in 

scRNA-Seq, especially when the whole cell population is split into more than 5 clusters (cell 

types), which is typical for complex biological systems.  

To compare scDAPA and Sierra with scAPA and scMAPA in multiple-cluster settings, since 

scDAPA and Sierra identify APA genes only between cell cluster pairs, we combined the 
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pairwise significant APA genes in each method separately. After controlling FDR on the 

combined APA genes, we called APA genes if they are significant in any of the pairwise 

identifications. 

Controlling confounders 

To compare the running modes, we first divided the mouse brain data into 10 cell groups by cell 

type and brain region (5 cell types × 2 brain regions). In each data, we quantified the APA 

isoforms using scMAPA in two running modes, referred to as brain-region- 

confounding/controlled in the main text. The brain-region-confounding model is formulated as  

𝐴𝑃𝐴_𝐼𝑠𝑜𝑓𝑜𝑟𝑚~𝑐𝑒𝑙𝑙_𝑡𝑦𝑝𝑒.  

And the brain-region-controlled model is formulated as  

𝐴𝑃𝐴_𝐼𝑠𝑜𝑓𝑜𝑟𝑚~𝑐𝑒𝑙𝑙_𝑡𝑦𝑝𝑒+brain_region.  

Availability of supporting source code and requirements 

Project name: scMAPA 

Project home page: https://github.com/ybai3/scMAPA 

Operating system: Platform independent  

Programming language: R 

License: GNU GPL 
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S. Table 1. Cell type annotation based on marker genes curated in CellMarker20 for 10k, 5k, and 

1k in the PBMC data. 

S. Table 2. Detailed information of APA genes detected by scMAPA, scAPA, scDAPA, and 

Sierra on the PBMC data including Ingenuity Pathway Analysis (IPA) analysis result. 

S. Table 3. scMAPA estimation result for APA genes on the mouse brain data.  

S. Table 4. Result of IPA comparison analysis on the “Disease & Function” terms enriched for 

APA genes identified uniquely by scAPA, scMAPA, and commonly by both on the mouse brain 

data (1,446, 2,175, and 1,048 respectively).  

S. Table 5. Result of IPA comparison analysis on the “Disease & Function” terms enriched for 

APA genes identified uniquely in astrocyte, immune, oligos, vascular, and neuron cells.  

S. Table 6. scMAPA estimates on the input data that are split by cell type and brain region either 

with brain region as a confounder or not.  

S. Table 7. IPA upstream regulator analysis result (enrichment p-value) on 113 and 2,715 APA 

genes that are supposed to be brain-region-specific and non-specific, respectively.  

 



 

 
Figure 1. Motivation and schematic illustration of scMAPA. (A) The read density shape on the FLT3 3ʹ-

UTR in multiple cell types of 10k PBMC scRNA-Seq data. (B) The transformed read density shape on the FLT3 

3ʹ-UTR in multiple cell types of 10k PBMC scRNA-Seq data. The red arrow indicates the proximal polyA site 

predicted. (C) The read density shape on the GATA2 3ʹ-UTR in multiple cell types of 10k PBMC scRNA-Seq 

data. (D) The transformed read density shape on the GATA2 3ʹ-UTR in multiple cell types of 10k PBMC 

scRNA-Seq data. The red arrow indicates the proximal polyA site predicted. (E) In Step 0 and 1, bars in solid 

color represent 3ʹ biased scRNA-Seq reads and bars in light color indicate how the 3ʹ biased reads are padded 

from the 3ʹ start site to the end of the read to represent the full-length 3ʹ UTR of the transcript. In Step 2, the 

blue and green bars indicate the estimated isoforms in each cell type, where solid and light coloring mode 

indicate 3ʹ UTR long and short isoforms. In Step 3 and 4, the bars represent the estimated number of APA 

isoforms in each cell type. 
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Figure 2. Performance assessment on the statistical component of scMAPA and scAPA using simulated data. 

With fixed number of true APA events (500 out of 5000) and uniform distribution of cell cluster size (600 cells 

in each cell type) (A). Illustration of the simulation process. Genes identified as significant APA genes by both 

scMAPA and scAPA were considered as APA genes. Genes identified as non-significant APA genes by both 

methods were considered as non-APA genes. (B) Comparison of scMAPA vs. scAPA in terms of sensitivity. 

We varied the standard deviation (SD) of APA isoforms across clusters (SDisoprop) for 500 true APA genes 

(0.06 to 0.18) with the fixed SDisoprop value for 4,500 non-APA genes (0.009). (C) Comparison of scMAPA vs. 

scAPA in terms of specificity in the same scenario. (D) Comparison of scMAPA vs. scAPA in terms of 

sensitivity. We varied cell cluster size: (20%, 20%, 20%, 20%, 20%) for scenario a, (30%, 17.5%, 17.5%, 

17.5%, 17.5%) for b, and (50%, 12.5%, 12.5%, 12.5%, 12.5%) for c. 
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Figure 3. Performance assessment of scMAPA, scAPA, scDAPA, and Sierra using PBMC data. (A) The ratio 

of annotated pA sites identified by scMAPA vs. scAPA and Sierra on the PBMC 10k data. The identified pA 

sites were deemed annotated when they are within a range to any annotated pA sites while the range was set 

from 10 bp to 130 bp, respectively. We extracted the annotated pA sites from PolyASite 2.0. (B) The ratio of 

significant APA genes found in all three PBMC data (10k, 5k, and 1k) in blue bar and in any combination but 

all three in orange by scMAPA, scAPA, scDAPA, and Sierra (C) Box plots showing the proportion of the 

overlap between sample APA genes and total APA genes normalized to total APA genes (APA agreement 

ratio). The APA agreement ratio values were evaluated in various numbers of cell types sampled. (D) 

Significance of enrichment (blue bar) and number of overlaps (orange line) of 3,574 scMAPA APA genes on 

IPA Disease and Function terms with the keyword “blood” or “hematopoiesis”.  
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Figure 4. A novel module of scMAPA cell-type-specific APA identification on the mouse brain data. (A) tSNE 

plot showing the cell types of the mouse brain scRNA-Seq data. (B) Heatmap of the APA effect sizes estimated 

for each cell type, representing the coefficients in the scMAPA logistic regression model. (C) PCA plot showing 

how the cell types are similar or dissimilar in the APA effect size. PC1 and PC2 together account for 70.3% of 

the variation. (D) Bar plot showing the number of significant 3ʹ-UTR lengthening (red) and shortening (blue) 

identified in each cell type.   
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Figure 5. (A) tSNE plot showing the brain region of the mouse brain scRNA-Seq data. (B) Venn diagram 

showing the APA genes identified by the confounder-adjusted scMAPA and the confounder-unadjusted model. 

(C) Box plot showing significance of overlap between the 113 genes and the up-regulated genes in GTEx brain 

samples whether they are from cortex (red) or not (green). (D) Significance (B-H p-value) of IPA enrichment 

terms that are uniquely and significantly (B-H p-value<10-2) enriched to 2,793 confounder-adjusted scMAPA.  
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Aug. 6th, 2021 

 
Dear Dr. Zauner, 

 

I would like to submit our manuscript, “scMAPA: Identification of Cell-type-specific 

Alternative Polyadenylation in Complex Tissues” for publication. This is a revision to our 

previous submission (GIGA-D-21-00066, “Cell-type-specific alternative polyadenylation 

(APA) genes reveal the function of dynamic APA in complex tissues”). Please find our point-

to-point response to reviewers’ comments in the next page.  

 

Alternative polyadenylation (APA) is emerging as an important regulatory layer in transcriptomic 

analysis. Recently, several bioinformatics tools have been developed to identify genes with 

dynamic APA in single-cell RNA-Seq data. However, the current methods lack statistical power 

and interpretability for complex tissues.  

 

To address these limitations, we developed scMAPA that systematically integrates two novel 

steps. First, it quantifies 3ʹ-UTR long and short isoforms without posing assumptions on the 

signal shape of input data, increasing sensitivity in identifying APA genes. Second, it estimates 

the significance of the APA genes for each cell type while controlling confounders, enabling to 

study APA function in complex biological systems. Using our novel simulated and biological 

data, we showed that scMAPA outperforms the other methods and demonstrated how the 

increased power and enhanced interpretability would help better understand the APA biology in 

complex tissues.  

 

We would like to ask to exclude the following researchers who are in competition to develop 

similar methods to review our manuscript.  

 Dr. Wei Li at UCI (wei.li@uci.edu) 

 Dr. Congting Ye at Xianmen University (yec@xmu.edu.cn) 

 Dr. Xiaohui Wu at Xianmen University (xhuister@xmu.edu.cn) 

 Dr. Ran Elkon at Tel Aviv University (ranel@tauex.tau.ac.il) 

 Dr. Eldad David Shulman at Tel Aviv University (eldadshulman@mail.tau.ac.il) 

 Dr. Richard P. Harvey at UNSW Australia (r.harvey@victorchang.edu.au) 

 Dr. Kitty K. Lo at UNSW Australia (kitty.lo@sydney.edu.au) 

Best Regards, 

 
 

Hyun Jung Park, Ph.D. 

HYP15@pitt.edu 

http://parklab.pitt.edu 
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Summary: We would like to appreciate that Reviewers acknowledged the significance and 

novelty of our findings. For example: 

 “a novel tool for the identification” (Reviewer #1) 

 “scMAPA, improves on existing methods” (Reviewer #1) 

 “this work should be of use to researchers interested in APA studies” (Reviewer #2) 

 “The work was well carried out” (Reviewer #2) 

 

Please see below for a detailed point-by-point response. The comments of editor or reviewers 

are indicated in red font.  

 

Response to Editor 

Thank you for considering GigaScience. Peer review of your manuscript is now complete and, in 

the light of the reports, and my own assessment as Editor, I regret to inform you that your 

manuscript cannot be accepted for publication in GigaScience in its present form. Please find the 

reviewers' reports at the end of this email. 

 

 - Reviewer 2 would like to see some additional validation, e.g.  including scDAPA and Sierra in 

the performance assessment, among other points. 

Response:  

Our performance assessment used simulated and biological (PBMC) data. When using the 

simulated data, we could not include scDAPA and Sierra because they do not meet two 

assumptions underlying the use of the simulated data. First, our simulation assumes five 

simulated cell clusters because  determines the APA isoform ratios across the five 

simulated cell clusters. However, both scDAPA and Sierra are not designed to handle multiple 

cell clusters. For example, Sierra modified DEXSeq[1] such that it does not apply to more than 2 

conditions (which is cell types in this case). Second, our simulation assumes that the method 

identifies APA events based on the expression levels of APA isoforms. For example, scAPA and 

scMAPA use Pearson’s χ2 and likelihood ratio test on the identified APA isoform abundances, 

respectively. However, scDAPA and Sierra do not separate the task of identifying APA isoform 

abundances and of calling APA events based on the abundances.  

 However, on the PBMC data, we included scDAPA and Sierra. Including scDAPA and 

Sierra was possible since the real data are not restricted by . Since it is not restricted by 

, we collected the scDAPA and Sierra results from all pairwise identifications after 

FDR control (see Methods).  

 

- Reviewer 1 also has a number of critical concerns that require more work. The reviewer seems 

to have missed the link to the "supporting methods", which was included in the PDF. However, 

the reviewer is correct that the methods section should be part of the main paper. 

Response: We apologize that we did not put the methods section in the main paper. In this 

submission, we ensured that all the sections are aligned in the proper order in the main paper.  

 

The write-up of the manuscript also needs to be improved in terms of clarity. 

Response: We greatly appreciate pointing out this important improvement. We updated our 

overall writing in the new submission.  

 

Besides what the Editor pointed out; we addressed all the Reviewers’ comments in the below.  

 

Response to Reviewer #1 

The authors here present a novel tool for the identification of alternatively polyadenylated (APA) 

genes from single cell RNA sequencing (scRNA-seq). The tool, scMAPA, improves on existing 



methods by modelling the expression profile of APA sites without assuming data are peak-based. 

scMAPA can achieve this even for multi-cellular source data. 

 

In the manuscript the authors make reference several times to a Methods section which does not 

appear to exist as well as multiple supplementary figures and tables which are also not available 

to this reviewer. 

 

It also appears that this manuscript is not properly formatted for a Technical Note which requires 

Abstract, Keywords, Findings and Methods not Abstract, Introduction, Results and Discussion. 

 

The authors need to follow the instructions for the appropriate manuscript type they wish to 

submit as currently this is not a Technical Note. 

 

Given these deficiencies, I cannot review the submission properly, but give the following general 

guidance and comments. 

 

   * Given their use of a simulation, how have the authors ensured that the simulation is both 

representative and not unintentionally optimised to favour scMAPA? 

Response:  

To ensure that the simulated APA gene data are representative, we identified high variance of 

APA isoform ratios as a common feature of APA genes across multiple cell types in the 

manuscript as follows. “we decided to quantify a common feature of the APA genes by 

calculating the proportion of the long and short isoforms in each cell type and the standard 

deviation of the proportions across the five cell types ( , see Methods). To validate the 

effectiveness of this measure, we calculated  values for non-APA genes that scAPA 

and scMAPA agreed on in the data. We found that high  values significantly 

distinguish APA genes from non-APA genes (0.127 vs. 0.009 of  on average, p<2.2e-16, 

S. Fig. 2A), suggesting that it is reasonable to simulate APA genes to have high  values 

in the data of multiple (≥2) cell types” With this, we simulated the APA genes to have a higher 

variance in the APA isoform (3ʹ-UTR long and short) ratios than non-APA genes across the 

simulated cell clusters (step 2 in Fig. 2A).  

 To ensure that the simulation is not optimized to favour scMAPA, we set  based 

on the APA and non-APA genes identified by both scMAPA and scAPA in the mouse brain data 

(Step 1 in S. Fig. 2A). This is because scMAPA and scAPA are the only methods that can 

identify APA genes in the multi-cluster setting (S. Fig. 1C). To conduct another important part of 

the simulation which is simulating gene expression levels (Step 3 in S. Fig. 2A), we ensured not 

to favor scMAPA by using an independent method, Splatter, and by taking the parameters from 

public biological data, the mouse brain data. Since the rest step (Step 4 in S. Fig. 2A) is a simple 

numeric calculation based on the simulated data above, no other bias is expected to favor 

scMAPA.  

 

   * How is SDisoprop is good parameter for discriminting between good and bad performance? 

Response: , defined as the standard deviation value of the APA isoform ratios across 

cell clusters, is a good parameter, because this measure captures the common characteristic of 

APA genes as shown above.  

   

 

   * The description of how IPA was used and how it supports the authors' conclusions is unclear. 

Could they do the same with GO? 



Response: Thanks to your comments, I clarified the manuscript as follows; “we performed 

Ingenuity Pathway Analysis (IPA) on 3,574 APA genes that scMAPA identified in the 10k 

PBMC data. Especially, to accurately investigate the APA genes’ roles in PBMC biology, we set 

the 18,804 genes expressed in the data as the background.”  

 To clarify how this analysis supports our conclusion, we updated the description in the 

manuscript as follows, “This IPA analysis shows significant (B-H p-value < 10-2) enrichments to 

32 IPA terms that are characterized with keywords “blood” and “hematology” (Fig. 3D), 

suggesting that the APA genes identified by scMAPA can play important roles in PBMC 

biology.”  

 With the reviewer’s suggestion of doing the same with GO, we identified multiple GO 

terms significantly enriched with the 3,574 genes using gProfiler, including 3 GO terms with 

keyword 

“hematopo

ietic” (R. 

Table 1). 

The 

“hematopo

ietic” GO 

terms 

support 

our 

conclusion 

that 

scMAPA enables the identification of biologically reasonable APA genes in the PBMC scRNA-

Seq data.  

 

   * The use of the heatmap and dendrogram in Figure 4 to support "systematically confirms the 

previous finding" is not very convincing. 

Response: We thank the reviewer for this suggestion. We agree with the reviewer that the current 

claim is not very convincing for two reasons. First, since the “previous finding” refers to the APA 

pattern difference between neuron and immune cell type, our previous claim that computational 

analyses “systematically confirm” the APA pattern differences might be too strong. Hence, we 

changed it into “the analyses supported the previous finding” in the manuscript. Second, the 

heatmap and dendrogram might not directly show the difference. To demonstrate the difference in 

a more direct way, we conducted additional analyses described as follows. “we performed the 

PCA analysis (Fig. 4C) and calculated Euclidean distance (S. Fig. 4A) among the cell types. 

While both the analyses supported the previous finding that immune and neuron cells are most 

different in terms of the APA effect size 26, they further revealed that immune cells are different 

from all other cell types.”  

 

   * The confounding factors section is very confusing and I am not sure what it is the authors are 

trying to highlight. 

Response: We appreciate the reviewer’s feedback. In response to this reviewer’s comment, we 

extensively worked to improve the clarity of this section in the manuscript as follows. “To show 

how scMAPA controls confounding factors and why it is important, we analyzed the mouse brain 

data consisting of 5 cell types collected from 2 brain regions (cortex and midbrain). Since some 

cell types were collected from multiple brain regions (Fig. 4A, 5A), some APA genes associated 

with a brain region can be mistakenly identified as cell-type-specific APA genes, which would 

further confound studying cell-type-specific functions of APA genes. To see if scMAPA can 

remove such false positive APA genes, we ran scMAPA with the brain region information (cortex 

and midbrain dorsal) as the confounder (confounder-adjusted scMAPA) and without the 

GO biological process
Total # 
genes

Observed 
# of 

overlaps
Expected # 
of overlaps

Over-/under-
expressed

Fold 
enrichment

FDR p-
value

regulation of hematopoietic 
progenitor cell differentiation 
(GO:1901532) 90 34 14.06 Over 2.42 2.21E-03
regulation of hematopoietic stem cell 
differentiation (GO:1902036) 75 27 11.72 Over 2.3 1.34E-02
hematopoietic or lymphoid organ 
development (GO:0048534) 619 141 96.69 Over 1.46 3.12E-03

 
R. Table 1. GO analysis on 3,574 APA genes identified by scMultiAPA.  



confounder (confounder-unadjusted model), separately. As the confounder-adjusted scMAPA and 

the confounder-unadjusted model identified 2,715 and 2,793 APA genes respectively (S. Table 

6), 113 genes are no longer identified as significant APA gene after adjusting brain region. Thus, 

these APA genes are expected to be related to the confounders (confounder-related APA genes, 

Fig. 5B), which is the brain region it was sampled from (cortex and midbrain). To test if the 113 

genes function specifically for the brain region, we test if they express highly specifically in the 

brain region. To conduct this test comprehensively, we identified their human homolog genes in 

the Mouse Genomic Informatics (MGI) homology database and compared expression of human 

homologs between cortex and other brain regions in the Genotype-Tissue Expression (GTEx) [2] 

(see Methods). The result shows that these APA genes are significantly up-regulated in brain 

cortex compared to other brain regions (p-value=5.8e-7, Fig. 5D), suggesting that their functions 

are specific to brain cortex. Since GTEx does not collect the expression data for midbrain, we did 

not conduct this analysis for midbrain. This result suggests that, when scMAPA sets a 

confounder, it can successfully distinguish and exclude the APA genes that are likely related to 

the confounder.  

 To demonstrate why distinguishing and excluding the confounder-related APA genes is 

critical for accurate downstream analysis, we further conducted IPA analysis on the 2,715 and 

2,793 APA genes identified by the confounder-adjusted scMAPA and the confounder-unadjusted 

model respectively (confounder-adjusted and confounder-unadjusted APA genes, respectively). 

Comparing the IPA enrichment between confounder-adjusted and confounder-unadjusted APA 

genes, we found considerable differences in important terms for brain study: among the 24 terms 

to which the confounder-adjusted APA genes are uniquely and significantly (B-H P-value < 10-2) 

enriched, 7 terms are directly related to brain diseases (Fig. 5D). For example, two terms with the 

keyword “mental retardation” are significantly enriched (B-H P-value < 10-3.5) only for the 

confounder-adjusted APA genes. On the other hand, among the 30 terms to which the 

confounder-unadjusted APA genes are uniquely and significantly enriched, no term refers to a 

brain disease (S. Fig. 5A). This result suggests that the confounder-adjusted scMAPA uncovers 

the APA genes that can play critical roles in the brain disease, which would be invisible due to 

the confounding factors.” 

 

Finally, with respect to the code on github, it is good there is a tutorial to follow with simple steps 

1, 2 and 3. However, the implementation is impossible to follow without know the source data 

very well. In the reference data they link to (omitted here for simplicity), there are 132 different 

sample BAM files, none of which match the description of "Neurons, Immunes, and Oligos" as 

per the README. It is the same with the "Cluster information" file. 

Where is the information for barcodes for each sample? I cannot, therefore, test the code for 

functionality. I recommend the authors make the tutorial much clearer making it absolutely clear 

what each step's inputs are and where they come from. 

Response: We deeply appreciate your careful review. We revised our github page according to 

the reviewer’s advice. To run scMAPA, we provide mb_example.bam and mb_cluster.csv as 

example data on our GitHub page, which is a downsized mouse brain scRNA data [3]. In the 

example data, we only keep three cell clusters: Neurons, Immune cells, and Oligos to make it 

easy to use. For fast processing, 200 cells are kept for each cluster. Additionally, we put example 

commands and configurations for each step on our Github page. 

 

Thank you for your time and effort to review our manuscript. We appreciate your detailed 

comments. Please feel free to let us know if there are things to improve. We are looking forward 

to hearing your thoughts about our revised manuscript. 

 

Response to Reviewer #2 



This manuscript by Bai et al. reports a new computational method named scMAPA for APA 

analysis in single cells. The authors show the performance of scMAPA compared to other 

programs. They additionally revealed some interesting APA events in PBMC and brain cell data. 

Overall, this work should be of use to researchers interested in APA studies. The work was well 

carried out. There are, however, multiple issues that prevent the manuscript from being 

acceptable for publication at this stage.  

 

Thank you for your acknowledgment of our method. Please see below for a detailed point-by-

point response. The red fonts are your comment, and the black fonts are our response. 

 

 

Major:  

 

- Performance assessment should include scDAPA and Sierra.  

Response: Our performance assessment used simulated and biological (PBMC) data. When using 

the simulated data, we could not include scDAPA and Sierra because they do not meet two 

assumptions underlying the use of the simulated data. First, our simulation assumes five 

simulated cell clusters because  determines the APA isoform ratios across the five 

simulated cell clusters. However, both scDAPA and Sierra are not designed to handle multiple 

cell clusters. For example, Sierra modified DEXSeq[1] such that it does not apply to more than 2 

conditions (which is cell types in this case). Second, our simulation assumes that the method 

identifies APA events based on the expression levels of APA isoforms. For example, scAPA and 

scMAPA use Pearson’s χ2 and likelihood ratio test on the identified APA isoform abundances, 

respectively. However, scDAPA and Sierra do not separate the task of identifying APA isoform 

abundances and of calling APA events based on the abundances.  

 However, on the PBMC data, we included scDAPA and Sierra. Including scDAPA and 

Sierra was possible since the real data are not restricted by . Since it is not restricted by 

, we collected the scDAPA and Sierra results from all pairwise identifications after 

FDR control (see Methods).  

 

Some false positive and false negative examples should be shown. 

 

Thanks to the reviewer’s comment, we inspected potential false positive and false negative 

examples of scMAPA identifications. First, among 62 significant APA events identified only by 

scMAPA in the 10k PBMC data, we found a potential false-positive gene in which the APA 

isoform ratios do not seem to vary much, PF4 (R. Fig. 1A). After our data transformation, the 

padded 3'UTR read density of PF4 shows limited variations across the cell types. Due to the 

limited variation, one may not suspect a significant APA event in PF4. An inspection of the pA 

estimate identified for PF4 also corroborates the possibility that it may be a false positive since 

the identified pA site does not show an apparent ‘change-point’ of the read coverage. Second, 

among 41 APA events identified by all the other methods (scAPA, Sierra, and scDAPA) but 

scMAPA, we found a potential false-negative gene in which the APA isoform ratios seem to 

vary, such as BCL9L. The padded 3'UTR read density of BCL9L shows various APA effect sizes 

especially in four cell clusters (B-2, CD16+ Mono, Platelets, and HSPC, R. Fig. 1B, C). 

However, since all the four clusters with a high APA effect size contain small sample sizes (R. 

Fig. 1C), it makes statistical sense not to estimate a significant APA event for BCL9L.  



 

 

- The authors should show explore false APA identification due to internal priming of A-

rich internal regions. 

Response: To explore false APA identification due to internal priming of A-rich internal regions, 

we implemented scMAPA to identify APA events potentially due to internal priming as written in 

Methods of the manuscript. “scMAPA can identify false APA identifications due to internal 

priming of A-rich internal regions if more than 7 consecutive adenines with up to 1 mismatch 

exists in 10 nt downstream of the predicted proximal PA site [4]. In the PBMC 10K data, we 

identified that 90 out of 3,574 APA events are due to suspected internal priming.” 

 

- The authors should show global 3'UTR size differences in PMBC cells as they did with 

brain cells. 

Response: In response to the reviewer’s suggestion, we showed global 3'UTR size differences in 

the 10k PMBC cells, which is now included in the supplementary material as follows. “The 

global size differences in PBMC cells are different from those in the mouse brain data in several 

aspects. First, 3'UTR lengthening occurs more than 3'UTR shortening in all the cell types (S. Fig. 

4E). Second, however, the number of 3'UTR shortening genes is significantly correlated with that 

of lengthening genes across the cell types (P-value=5e-5, S. Fig. 4F). Since both trends are not 

shown in the mouse brain data, scMAPA elucidates the unique APA profiles of the PBMC data.”  

 

- The writing and data presentation overall suffer from lack of clarity. Substantial editing is 

recommended to make this paper more readable. 

Response: We thank the reviewer for suggesting this critical improvement. We updated our 

overall writing in the new submission.  

 

Minor: 

 

- In the Abstract, the authors indicate that they removed 'assumptions existing methods 

had…" The authors should make this more clear in the Abstract. I could not grasp what they are 

talking about.   

Response: We updated that part in Abstract as follows “they assume certain read coverage shapes 

in the scRNA-Seq data, which can be violated in multiple APA genes.” 

 

- The authors should show some real examples in the main figure. For example, Figure 1 

could be include examples like FLT3/GATA2 to illustrate their schematic. 

Response: In response to the reviewer’s suggestion, we moved the examples of FLT3/GATA2 

into the main figure (Fig. 1 A, B, C, D).  

 

 
R. Figure 1 Normalized scRNA-Seq data density on the 3ʹ-UTRs of PF4 and BCL9L (A, B, respectively). In A, the red 

arrow indicates the pA site identified by scMAPA. C. scMultiAPA estimated the APA degree (|βi| in scMultiAPA, see 

Methods) for each cell cluster for BCL9L, which is inversely correlated with the sample size.  

 



- Fig. 3A. X-axis label "distance' is not clearly defined. 

Response:  

We updated the label into “proximity to match with annotated pA site (bp)” since we calculated 

the ratio of the identified pA sites that are close to the annotated pA sites.  
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